Bezout Inequality for Mixed Volumes
نویسندگان
چکیده
منابع مشابه
Bezout Inequality for Mixed Volumes
In this paper we consider the following analog of Bezout inequality for mixed volumes: V (P1, . . . , Pr,∆ )Vn(∆) r−1 ≤ r ∏ i=1 V (Pi,∆ ) for 2 ≤ r ≤ n. We show that the above inequality is true when ∆ is an n -dimensional simplex and P1, . . . , Pr are convex bodies in R . We conjecture that if the above inequality is true for all convex bodies P1, . . . , Pr , then ∆ must be an n -dimensional...
متن کاملWeak Bezout inequality for D-modules
Let {wi,j}1≤i≤n,1≤j≤s ⊂ Lm = F (X1, . . . , Xm)[ ∂ ∂X1 , . . . , ∂ ∂Xm ] be linear partial differential operators of orders with respect to ∂ ∂X1 , . . . , ∂ ∂Xm at most d. We prove an upper bound n(4mdmin{n, s}) (2(m−t)) on the leading coefficient of the Hilbert-Kolchin polynomial of the left Lm-module 〈{w1,j , . . . , wn,j}1≤j≤s〉 ⊂ L n m having the differential type t (also being equal to the...
متن کاملComputing Mixed Discriminants , Mixed Volumes
We construct a probabilistic polynomial time algorithm that computes the mixed discriminant of given n positive definite n × n matrices within a 2O(n) factor. As a corollary, we show that the permanent of an n×n nonnegative matrix and the mixed volume of n ellipsoids inRn can be computed within a 2O(n) factor by probabilistic polynomial time algorithms. Since every convex body can be approximat...
متن کاملMixed Volumes of Hypersimplices
In this paper we consider mixed volumes of combinations of hypersimplices. These numbers, called “mixed Eulerian numbers”, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2016
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnv390